Job Superscheduler Architecture and Performance in
Computational Grid Environments

Hongzhang Shan, Leonid Oliker
Computational Research Division, Lawrence Berkeley Mafib.aboratory, Berkeley, CA 94720

Rupak Biswas
NASA Advanced Supercomputing Division, NASA Ames Resgantbr, Moffett Field, CA 94035

Abstract

Computational grids hold great promise in utilizing gequriaally separated heterogeneous re-
sources to solve large-scale complex scientific problemsveier, a number of major technical hurdles,
including distributed resource management and effectidesgheduling, stand in the way of realizing
these gains. In this paper, we propose a novel grid supeatsterchitecture and three distributed job
migration algorithms. We also model the critical interantbetween the superscheduler and autonomous
local schedulers. Extensive performance comparisonsidgihl, central, and local schemes using real
workloads from leading computational centers are condliota simulation environment. Additionally,
synthetic workloads are used to perform a detailed seitgitwalysis of our superscheduler. Several
key metrics demonstrate that substantial performancesgain be achieved via smart superscheduling
in distributed computational grids.

1 Introduction

Grid computing [1, 8] holds the promise to effectively shgemgraphically distributed heterogeneous re-
sources in a seamless and ubiquitous manner. The develbpimssmputational grids and the associated
middleware has therefore been actively pursued in recearsyelhere are many potential advantages to
utilizing the grid infrastructure, including the abilitg simulate applications whose computational require-
ments exceed local resources, and the reduction of jobrtisund time through workload balancing across
multiple computing facilities. However, many major teatali(and political) hurdles stand in the way of re-
alizing these gains. Among the myriad research issues tddressed is the problem of distributed resource
management and job scheduling for computational gridshodlgh numerous researchers have proposed
scheduling algorithms for parallel architectures [5, 69713, 15], the problem of scheduling jobs in a
heterogeneous grid environment is fundamentally differ€his is the focus of our work in this paper.

Job scheduling on computational grids is conducted viarmmmus local schedulers that cooperate
through asuperschedulef16] using grid middleware. Since the superscheduler (@ srheduler) does
not have control over the resources of the distributed caimgeenters, it depends on the individual local
batch queuing systems to initiate and manage job execufldv superscheduler is thus responsible for
discovering grid resources, monitoring system utilizatiand intelligently migrating workloads to the local
queues of distributed resource centers.

(©2003 Association for Computing Machinery. ACM acknowlesltfeat this contribution was authored or co-authored by &raon
tor or affiliate of the U.S. Government. As such, the Goveminnetains a nonexclusive, royalty-free right to publistreproduce
this article, or to allow others to do so, for Government usgs only.

SC’'03, November 15-21, 2003, Phoenix, Arizona, USA
Copyright 2003 ACM 1-58113-695-1/03/0011...$5.00

In this paper, we first investigate the architectural resmients of a superscheduler. Although various
aspects of its infrastructure have been studied before, [B0414], a number of important issues remain
unaddressed. These include the superscheduling algeritiieraction between the superscheduler and
various local schedulers, selection of jobs for migratiangd destination choice for the transferred jobs
(also known as the location policy). The superscheduleorilgn is basically a job transfer policy that
determines if there is a need to migrate jobs from one comguerver to another. Using system and
workload requirements, the grid scheduler determines vehserver becomes eligible to act as a sender
(transfer a job to another server) or as a receiver (retigejd from another server). The location policy
selects a partner server for a job transfer transactiontheravords, it locates complementary computing
nodes to/from which another node can send/receive worklé@admprove critical performance metrics.
Since these issues are important for effective grid sciregluive propose a novel distributed superscheduler
architecture and three job migration algorithms in thisgzapVe then compare their performance in terms
of several key metrics with ideal, central, and local screme simulation environment.

The other distinguishing aspect of this research is the fsetab and synthetic workloads used in our
experiments. We obtained real workload data (binary coilgdtfrom three leading computational centers
over the same six-month period of 2002. Since the trace ddta the same period of time, we are able
to evaluate the potential benefits of allowing jobs to migtattween distributed compute nodes. By exam-
ining real data, we accurately demonstrate the substgmgifbrmance improvement, in terms of average
waiting time and average response time, that can be achigaesinart superscheduling in computational
grid environments. Additionally, we present simulatioaukts based on heavy and light synthetic workloads
that are derived from the real workloads using the hypeasigrldistribution of common order [11, 12]. By
varying the model parameters, synthetic workloads alloviousonduct a detailed sensitivity analysis of
superscheduling architectures and algorithms underrdriteconditions, such as over-/under-subscription
and additional compute servers.

Our overall results demonstrate that intelligent supexdaling can deliver substantial performance
gains compared to locally isolated machines. However, imgortant to note that this preliminary study
does not attempt to address many complex questions relatsahiputational grids. Future research will
build on our simulation environment to address issues ssgbtamigration overhead, grid network costs,
superscheduler scalability, fault tolerance, multigeaurce requirements, and architectural heterogeneity.

The remainder of the paper is organized as follows. Sectides2ribes the distributed superscheduler
architecture and the three job migration algorithms thaerxcloped. Section 3 discusses the simulation
environment, including the real and synthetic workloads] warious performance metrics. Detailed per-
formance analysis, including the effects of local schedufolicy on overall grid performance, is reported
in Section 4. Finally, Section 5 concludes the paper by sumaing this work and providing a preview of
future research in this area.

2 Superscheduler Architecture

This section presents the three job superscheduling acthies examined in this study. We first de-
scribe the distributed architecture and three job mignatityorithms: sender-initiated receiver-initiated
and symmetrically-initiated Next we present a centralized architecture that uses éesyhgbal queue to
schedule jobs in a grid environment. Finally, we introducédealized strategy to establish an upper bound
on performance.

2.1 Distributed

The distributed architecture for the grid job superschedid depicted in Figure 1. It is composed of a
collection of autonomous local schedulers that cooperétetie superscheduler through grid middleware.
A new job is first submitted to grid queue(GQ), which then forwards the job’s resource requirememts t
thegrid schedulerGS). In the distributed architecture, the GS is assumeaye hn affinity to a particular
local scheduler(LS). The GS queries the LS via tigeid middleware(GM) for the approximate wait time
(AWT) that the job would have stay in thecal queugLQ) before beginning execution on the local system.
The LS computes the AWT based on the local scheduling policythe LQ status. If the local resources
cannot satisfy the requirements of the job, an AWT of infimstyeturned. If the AWT is below a minimal
thresholdyp, the job is moved from the GQ directly into the LQ without amyeznal network communication.
Otherwise, one of the three distributed job transfer ators is invoked by sending workload information
to apartner setof computing facilities connected via the grid. The pseaddes for all three algorithms are
shown in Figure 2. For the simulations in this paper, thergarset contains all of the available machines
on the grid. However, in a large computational grid settiegch machine would intelligently organize
and dynamically update a subset of the available partnekedp the system efficient and scalable. The
management of partner sets will be the subject of future work

Communication Infrastructu
A A
Users _ Y Users : Y
Grid |) Grid Grid | Grid

Queue Middleware Queue Middleware
€<1--——= A A €<1--——= A A
| |
‘ | ‘ |
Scheduler i Scheduler i
Local I Local I
Queue v Queue v
Local Local
<€-- Scheduler <€-- Scheduler
J J

A A
v v v v
Compute Servi Compute Servi
PE PE PE PE PE PE

Figure 1: Distributed architecture of the grid supersclhexd(solid arrows represent movement of jobs,
dashed arrows represent transfer of information).

2.1.1 Sender-Initiated

In the sender-initiated (S-1) strategy, the GS sends thmuree demands of the job to the compute server’s
partner set via the GM. In this study, we only consider the GO run time requirements of each job;
however, this can be extended to an arbitrary number of resaonstraints. In response to the GS query,
each partner returns the AWT aedpected run tim¢ERT) of the requested job, as well as its personal
resource utilization statu$RUS). Note that the ERT can vary from one computational nodanother

All Job Migration Algorithms:

JobJ arrives in Global Queue of Machine (GQ')
Compute Approximate Wait Time aof on L (AWTJL)
If (AWT¥ < ¢) Move J to Local Queue of L LQF)
Else Call S-I, R-l, or Sy-I

Sender-Initiated (S-1):
Send Resource Requirements/ofRR ;) to Partner Set of. (PS(L))

Compute Turnaround Cost foron all Machines inPS(L) (TCfS(L))
Find MachineM such tha’C¥ = min (TCk, TC¥5™)

Move J to LQM

Receiver-Initiated (R-1):

Each MachineR checks own Resource Utilization Statusl(S*?) at time intervale
If (RUSE < §) Send Availability MessageAM ?) to Partner Set oR (PS(R))
If (MachineL with Job.J in GQ* receivesAM)

SendRR; to all MachinesR

ComputeT’C# for all R

Find MachineM such that’C}! = min (TC¥)

If (TCY < TCE) Move J to LQM

Symmetrically-Initiated (Sy-1):

Call Rl
If (No Availability Messages) Call S-I

Figure 2: Pseudo-codes for the three distributed job magratigorithms.

depending on their architectural designs and program cteizations. If certain partners do not respond
within a specified time limit due to traffic congestion or maehfailure, they are simply ignored for that
request.

Based on the collected information, the GS calculates thengial turnaround cos{TC) of itself and
each partner. To compute the optimal TC, first the minimapproximate turnaround tim@ATT) is calcu-
lated as the sum of AWT and ERT. If the minimum ATT is within aadhtolerancec for multiple machines,
the system with the lowest RUS is chosen to accept the jobs TeiTC metric attempts to minimize the
user’s time-to-solution, while using system utilizatios atiebreaker. We found this approach to be more
effective then simply relying on ATT. A more robust TC metviould also consider the communication
overhead of data and job migration, and will be considerddture research. The job is then migrated into
the LQ of the machine with the minimal TC. The GM is resporesitdr handling the job transfer to the LQ
either locally or across the communication network to a tensite. Note that once a job enters a LQ, it
will be scheduled and run based exclusively on the locatpaif the LS, and will no longer be controlled
by the superscheduler or migrated to another site. Wherothé&jcompleted, the results are sent back to
the compute node where it was originally submitted. In otdevoid message congestion, the GS can only
send out a query for a new job after it has received all of tkparses from a previous call. During this
time, the new job waits in the GQ.

2.1.2 Receiver-lnitiated

The receiver-initiated (R-I) algorithm takes a more passigproach to job migration than the S-I strategy.
Here, each system in the computational grid checks its ow8 Réfiodically at time intervat. If the RUS

is below a certain thresholdl the machine volunteers itself for receiving jobs by infargits partner set

of its low utilization. Once a partner (saj) receives this information, it checks its GQ for the first job
waiting to be scheduled. If a job is indeed queued, its resorgquirements are sent to the volunteer node.
The underutilized system then responds with the job’s ABTwall as its own RUS. Based on this daia,
computes and compares the TC between itself and the votusyseem. If the TC of the volunteer is lower
than that ofZ, the job is transferred to the LQ of that system through the GMerwise, it continues to wait

in the GQ until either its local AWT falls below (examined at time intervat), or an available machine
volunteers its services.

2.1.3 Symmetrically-Initiated

Unlike S-I and R-I, the symmetrically-initiated (Sy-I) algthm works in both active and passive modes.
As in the R-I strategy, each machine periodically checkit®t RUS and broadcasts a message to its
partner set if it is underutilized. The difference occursewhhe local AWT of a job exceeds but no
underutilized machine volunteers its services. In the R@raach, the job passively sits in the GQ while
waiting for a volunteer, and periodically checks its loc&WVA at eacho time interval. However, the Sy-I
algorithm immediately switches to active mode and sendquers to its partners using the S-I strategy. The
main differences in the three job migration algorithms d¢fiere lie in the timing of the job transfer request
initiations and the destination choice for those requests.

2.2 Centralized

In the centralized architecture, all jobs are submitted single GQ which does not have an affinity to a
specific local system. The GS is responsible for making gldbeisions and assigning each job to a spe-
cific machine. The GS tracks the status of each job and mamta-to-date information on all available
resources, allowing it to compute the TC directly, withcug heed for any communication. When a job
arrives, the GS computes its TC for all systems, selects riieewoth the minimum TC, and immediately
migrates the job to that system. Although communicatie®fresource awareness is an unrealistic assump-
tion, it allows us to model the potential gain of a centralizechitecture. However, it constitutes a single
point of failure and thus suffers from a lack of reliabilitpcifault tolerance. Additionally, this approach has
severe scalability problems that may result in a perforradmattleneck for large-scale grid environments.
In contrast, the distributed approach has the potentia¢ toidgphly scalable and robust, since each computa-
tional facility runs its own GS. Detailed superschedulelagility and fault-tolerance will be addressed in
future work.

2.3 ldealized

Finally, we present an idealized superscheduler architedb establish an upper bound on grid perfor-
mance. Here, the entire computational grid is viewed asg@esiiirtual machine, where each node is con-
sidered to contain exactly one CPU running at 1 MHz. Thush €U in the grid running ak MHz will
contributeX’ nodes to the virtual machine, for a sum totalof . .,...,s #CPUs, x CPUSpeeg nodes.
Each submitted job is treated as a modulable workload heentimber of CPUs assigned to the job can be
varied arbitrarily according to the machine status, witlaasumption of ideal scalability. The idealized GS
can therefore perfectly pack the available resources witbrming jobs. For example, if a job requests eight
300 MHz CPUs for 100 seconds, the GS may assign the jolx®08x 100 CPUs in the virtual machine,

which would complete the computation in one second. Altiotlge performance predicted by this virtual
architecture can never be achieved, it establishes anpdearmance upper bound for computational grids.

3 Simulation Environment

The configurations of the computational servers used in imowlations are shown in Table 1. They are

six binary-compatible architectures currently deployed &Asted in the Top500 [2]. Each system is simi-

lar architecturally, consisting of cache-coherent SMPesodterconnected via a fast proprietary network.
However, individual characteristics such as CPU speed, Sik&? node count, and interconnect topology do
vary across the machines. Future work will address truees@eterogeneity. Currently, a common practice
for this type of architecture is that a single node cannotmamne than one job simultaneously, regardless of
the number of CPUs actually consumed by the job. We therafopéemented the same restriction in our

simulation environment. For the experiments in this paperalso made the simplifying assumption that
program performance is linearly related to CPU speed.

Server | Number | CPUs | CPU Speed
Identifier | of Nodes| per Node| (MHz)
M, 192 16 375
My 305 4 332
Ms 144 8 375
My 8 16 1300
Ms 74 4 375
Mg 180 4 375

Table 1: Configurations of the computational servers.

3.1 Workloads

We used both real and synthetic workloads in our experimdifits real workloads were collected from three
supercomputing centers: National Energy Research Site@dmputing Center (NERSC) at Lawrence
Berkeley National Laboratory, Lawrence Livermore Natlobaboratory, and San Diego Supercomputer
Center. These three machines are listedas M,, and Ms in Table 1. All three logs started on March

1, 2002 and ended August 31, 2002, and contained 13206994288 36131 batch jobs, respectively.
Interactive jobs were filtered out of the job submissiongsithey would normally be restricted to run on
the local systems. By using real user batch data over the sarageriod in our experiments, we are able
to accurately simulate the potential contribution of a ¢rged scheduler.

However, real workloads have certain limitations. Firstisia non-trivial task to obtain log reports
from various computing facilities, thus limiting the poteh scope of the simulations. It is also difficult
to use existing batch data to perform parameter studiesrgingaworkload conditions, such as over- or
under-subscribed systems. Therefore, we derived a sentiietic workloads from the real logs using the
methodology described in [11, 12].

In this approach, the real job data is first grouped into wBffé classes based on the number of processors
required for each execution. The initial class size is stte¢mumber of CPUs per node for the corresponding
machine. If the percentage of jobs within a class is below P#eototal, the class is merged with the smaller
of its neighboring classes. For each class, we then competfirst three non-center moments { o, 13)
separately for the inter-arrival and service times. Theghmoments essentially capture the generic features

of the workloads. Next, the hyper-Erlang distribution ofrtaon order, based on four parametets:\,

Ao, andp, that fits these three computed moments is selected. An d@avhp server with hyper-Erlang
distribution of common order is a system where a job must gassigh only one of two service paths
to completion. The parameteris the probability of selecting the first path. In each palie job passes
throughn stages, spending a random amount of service time at eaeh thg probability density function
of service time at each stage of the two paths is an expoheli@bution with mean timed/\; and

1/ X9, respectively. The parameters for the hyper-Erlang 8istions that model the real workloads oy,
M-, and M3 are presented in Table 2, which clearly shows that the tealeworkloads have significantly
different characteristics. Finally, the synthetic job miiksions are generated by combining the different
class models. We can create different workloads by varyegnodel parameters that control the inter-
arrival rate and service time.

Inter-arrival time Service time
Nmin Nmax % Jobs| = | /\1 | /\2 | P n | /\1 |)\2 | P
MachineM;

1 16| 43.0 1 | 2.75E-04| 4.71E-03| 0.0197| 1 | 9.10E-05| 4.55E-03| 0.4695
17 32| 15.2 1 | 1.44E-04| 2.41E-03| 0.0571| 2 | 1.04E-04| 2.74E-03| 0.3119
33 48 212 | 1 | 2.37E-05| 4.36E-04| 0.0847| 1 | 7.22E-05| 2.99E-03| 0.3319
49 112 | 279 1 | 2.22E-04| 4.16E-03| 0.0448| 1 | 7.31E-05| 3.94E-03| 0.2241
113 240 6.21 | 1 | 1.62E-04| 1.41E-03| 0.2253| 1 | 6.03E-05| 3.80E-04| 0.4072
241 | 3072 557 | 1 | 1.42E-04| 3.11E-03| 0.2728| 1 | 5.69E-05| 7.93E-04| 0.2473
Machine M,

1 41 19.0 1 | 3.99E-05| 1.64E-03| 0.0555| 1 | 1.00E-04| 6.79E-03| 0.0697

5 12| 10.4 1 | 2.18E-05| 9.08E-04| 0.0554| 1 | 1.43E-04| 5.39E-03| 0.1947
13 24| 17.0 1 | 3.14E-05| 8.07E-04| 0.0319| 1 | 1.47E-04| 1.07E-03| 0.3335
25 28 207 | 1 | 1.76E-06| 2.59E-04| 0.0250| 1 | 1.82E-04| 3.13E-02| 0.0115
29 44 484 | 1 | 2.02E-05| 3.76E-04| 0.1080| 1 | 6.09E-05| 2.41E-04| 0.0082
45 60 275 | 1 | 1.14E-05| 1.08E-04| 0.0561| 4 | 3.65E-04| 4.47E-02| 0.5000
61 92| 10.8 1 | 2.98E-05| 3.49E-04| 0.0200| 1 | 4.89E-06| 2.48E-04| 0.0009
93 104 5,07 | 1 | 1.72E-05| 1.64E-04| 0.0251| 2 | 1.09E-04| 3.64E-04| 0.0314
105 124 3.16 | 1 | 1.59E-06| 1.38E-04| 0.0074| 1 | 2.23E-04| 3.02E-03| 0.4179
125 176 | 13.6 1 | 1.09E-04| 5.27E-04| 0.1149| 2 | 8.07E-05| 3.19E-04| 0.0210
177 188 432 | 2 | 9.87E-05| 1.17E-03| 0.3762| 3 | 2.01E-04| 2.13E-02| 0.6043
189 252 3.67 | 1 | 9.15E-06| 1.38E-04| 0.0293| 1 | 9.26E-05| 3.28E-04| 0.0603
253 | 1220 3.41 | 1 | 8.73E-06| 1.93E-04| 0.0532| 1 | 1.97E-04| 1.75E-03| 0.4098
MachineMs3

1 8| 55.0 1 | 4.01E-05| 1.47E-03| 0.0047| 1 | 3.99E-05| 1.01E-03| 0.0411

9 24 8.09 | 1 | 3.77E-05| 4.35E-04| 0.1281| 2 | 3.92E-05| 2.25E-03| 0.2113
25 56 999 | 1 | 4.15E-05| 6.33E-04| 0.1235| 2 | 4.13E-05| 2.16E-03| 0.1400
57 120| 13.8 1 | 5.57E-05| 5.53E-04| 0.0833| 1 | 3.03E-05| 6.79E-04| 0.2539
121 248 499 | 1 | 2.73E-05| 3.64E-04| 0.1731| 3 | 6.91E-05| 1.01E-02| 0.2479
249 504 5,09 | 1 | 2.09E-05| 5.08E-04| 0.1431| 1 | 1.89E-05| 2.64E-04| 0.1033
505 | 1152 299 | 1 | 7.31E-06| 2.63E-04| 0.0766| 2 | 6.05E-05| 1.13E-02| 0.0671

Table 2: Parameters for the inter-arrival and service tioiegorkloads onM;, Ms, andMs.

3.2 Performance Metrics

We use several key metrics in our simulations to evaluateftieetiveness of the proposed grid supersched-

uler and the three distributed job migration algorithmse3dnmetrics are also used to compare performance
with local, central, and ideal job scheduling schemes. ®balland ideal strategies respectively are expected
to provide lower and upper bounds on the performance of asghidduler.

Since individual users and center system administratden dfave different (and possibly conflicting)
demands, no single measure can comprehensively capturalaed performance. From the users’ per-
spective, key measures of grid performance includedtrerage Response Tiraad theAverage Wait Time
These are computed as follow# (s the total number of jobs):

Average Response Time % Z (EndTimg — SubmitTime)
j€Jobs

- 1 , -
Average Wait Time= N Z (StartTimg — SubmitTime)
j€Jobs

whereSubmitTime, StartTime, andEndTime are the times when jopis submitted to the queue, when it
commences execution, and when it is completed. The resgonsanaround) time is probably the single
most important measure for an individual submitting a jotwyvaver, the wait time is also critical to users
even though it is usually beyond their control. The wait tisiespecially important for users running short
jobs. Finally, we also examine thfeserage Wait Time Deviatioin order to investigate overall fairness and
performance variability:

Average Wait Time Deviatior= — Z (WaitTimeg)? — (Z (WaitTimg /N))?
N (/. ,
jeJobs j€Jobs
whereWaitTimg = (StartTime — SubmitTime).
A system administrator (or funding agency), on the otherdha more interested in maximizing the
utilization of the available computational resources ath#r center. Thus, we present tAdad Efficiency

metric, which measures the overall ratio between consumddagailable computational resources across
the distributed grid. It is computed as:

> jcobs(ENdTime — StartTimg) x CPUs; x CPUSpeegd

Grid Effici = _ —
ri iciency (EndTime@,s¢_jor — SUDMItTIM@,.51_jop) X > CPUs,, x CPUSpeeg

x 100%

méeServers

where(EndTime,:_jo»—SubmitTime;, . ;o) iS the duration of the entire simulatioBPUs; andCPUSpeeg
are the number of processors used byj@amnd their clock speed; ari@PUs,, andCPUSpeeg are the num-
ber of processors in machime and their clock speed. Individual site-specific systenizatilons are also
reported to understand the effects of superschedulingaah tmmputational centers.

Finally, we present theraction of Jobs Transferretbr each scheduling approach:

Number of Jobs Transferred
Total Number of Jobs

Although our turnaround cost metric TC (defined in SectidnD).does not explicitly incorporate job migra-
tion overhead at this time, it is clear that network trafficatioe minimized. The fraction of jobs transferred
is an initial attempt to capture this cost.

Note that performance, measured by any metric, is highlgdeent on the workload requirements. For
example, we would not expect an underloaded system to deret benefit from a superscheduler in terms
of grid efficiency, as there may not be much room for improveime

Fraction of Jobs Transferred

8

4 Performance Analysis

This section presents and analyzes the simulation redudts gob migration algorithms in terms of the per-
formance metrics described in Section 3.2. We first exangakbworkload data from three supercomputing
centers, over one- and six-month submission periods. Nexiyse our synthetic workloads to evaluate a
larger, six-machine grid configuration under heavy andtlgystem load conditions. Finally, the effects of
the local scheduling policy on overall grid performancenigestigated.

4.1 Real Workloads

The real workload data was obtained from the job logs for #maes six-month period (March 1, 2002
through August 31, 2002) of the machinkg, M, andM3 listed in Table 1. We also examine a one-month
period (August 2002) to investigate differences in perfanae trends for shorter workload durations. Note
that only batch job data are used in our simulations; intesubmissions have been removed.

Table 3 presents the local run characteristics of the thi@ehines examined. Machind; is the most
heavily loaded, with an utilization of over 90%, whild; and M3 have lighter loads and lower utilization.
Also notice that the average wait time and response timéfgis significantly lower than the other two
machines. By examining the workload data, we found bulk fbiag require a relatively large fraction of
the computational resources often arrive at approximdtalysame time, thus preventing one another from
being efficiently scheduled. This presents an opportunityafsmart superscheduler to improve the average
turnaround times of these large submissions.

Six-month Workload One-month Workload

My [My, | My M, | My, | Mz
Number of Jobs 132,069| 42,339| 36,131 | 26,343| 5,735| 5,974
Local Machine Utilization 91% 72% 79% 92% | 72% 73%
Average Wait Time (sec) 8,318| 1,955| 11,506| 7,977| 5,173| 15,271
Average Response Time (sec) 13,404| 5,445| 16,660| 12,770| 9,525 | 20,075

Table 3: Characteristics of real workloads for local runs.

Figure 3 presents simulation results for the one- and sirtmoeal workload data sets for the five
metrics described in Section 3.2. Both the average wait éintethe average response time are normalized
relative to the performance of the local scheduler. Resultscompared among the three distributed job
migration algorithms: sender-initiated (S-1), receilmitiated (R-I), and symmetrically-initiated (Sy-I), as
well as with local, central, and ideal strategies.

Notice that the one- and six-month data exhibit similar altgzerformance trends, indicating that the
workload characteristics change little across months hatdwe do not expect to see a dramatic change
in our observations for longer time durations on these gystel'he normalized average wait and response
times, and the average wait time deviation are all key meefrimm an individual user’s perspective. These
results clearly demonstrate the large potential gain afigisi superscheduler, as opposed to relying on
traditional local job submission in a grid environment. Eegample, comparing the local and S-1 schemes
for six-month data, we see that the average wait time is edllny a factor of 2.5, along with a 30%
improvement in its deviation and a 1.5X reduction in the agerresponse time.

Comparing the individual distributed job migration schenanong themselves, we find the R-I per-
formance to be lower than that of S-1. This is because the pataach is the most passive, waiting for
machines to advertise themselves and thus migrating thestemumber of jobs. Figure 3 shows that R-I
migrates less than 10% of all jobs, while S-I transfers 0@ 4Lowering the utilization thresholdfrom

1 1
0.8 +— 0.8 +—
0.6 +— 0.6 +—
0.4 4 0.4
0.2 0.2
0 0
One-month Six-months One-month Six-months
Normalized Average Response Time Normalized Average Wait Time
60 86%
50 @ Local O Local
40 |S 84% ms-l
aRl OR-
30 A
osSy- o Sy-I
20 mCntl 82% - B Cntl
10 4 o ldeal o Ideal
0 80% -
One-month Six-months One-month Six-months
Average Wait Time Deviation Grid Efficiency
0.60
0.50 -
@ Local
0.40 - @S
0.30 ORI
0.20 asy-l
mCntl
0.10 A
0.00
One-month Six-months
Fraction of Jobs Transferred

Figure 3: Performance results for the one- and six-monthwegkloads.

0.7 and/or the time interval from 300 secs (see Section 2.1.2) would improve performbhuotacrease the
number of jobs transferred. Nonetheless, compared to ta $cheme, the average wait time of R-1 is still
reduced by an impressive 50%. The Sy-I scheme is more flettible R-1, having the option to passively
wait for a machine to advertise their availability, or toiaely migrate jobs if no volunteers appear. The
Sy-I algorithm strikes a good balance, achieving bettefioperance than R-1 while transferring significantly
fewer jobs than S-I. Future work will directly incorporatebjmigration overhead into our cost models.
The central scheme achieves about the same performanck ai& transferring a higher fraction of
its jobs to a remote site. Recall from Section 2.2 that theérakred architecture has a single grid queue
whereas S-I has multiple grid queues. In S-I, a job is conedtléor migration only if its approximate wait
time is larger than a thresholfl (see Section 2.1) set to 60 secs; instead all jobs are adsigmeachines
solely based on turnaround cost in the centralized appro@bkrefore, the S-I algorithm is significantly

10

more conservative in moving jobs. However, observe thaahgobs are transferred in the central scheme.
Since input/output data for each job still has an affinity tpaaticular computational node, we do not
consider it a transfer if a job migrates to that node. Thereémstheme is also too limited in terms of
fault tolerance and scalability. Finally, an idealizeddtiainable) algorithm is presented to establish upper
bounds on performance.

Grid efficiency for the six schemes are also presented inr€i§uRather surprisingly, it remains prac-
tically unchanged regardless of the scheduling algoritidn.closer inspection, we found that the overall
grid resources were under-subscribed, thus allowing littiprovement in grid efficiency even in the ideal
case. This result further motivated us to explore supedhdhy performance under both heavy and light
grid load conditions, using synthetically generated data. Note that even though there is little change in
grid efficiency, individual site utilization is dependent the specific job migration scheme. For example,
comparing local and S-I for the six-month data, utilizatehranged from 92%, 72%, and 73% to a more
“balanced” 86%, 81%, and 78% fadr, M-, andMj3, respectively. However, interpreting these results can
be rather difficult. For example, if an over-subscribed’sitgilization decreases due to grid participation,
it may seem like a positive consequence to an individual; Usavever, the center management may be
unhappy with the new outcome since lower utilization maygrdize future funding.

4.2 Synthetic Workloads

To study superscheduler performance with respect to varankload demands, we generated synthetic job
submission data using the methodology described in SeBtionhe statistical models of the real workload
data using the hyper-Erlang distribution of common order strown in Table 2. Once these parameters
are generated, they can be adjusted accordingly to simdifi¢éeent workload conditions. Our synthetic
workloads simulate heavily- and lightly-loaded systemditions for a relatively larger six-machine grid
configuration over a two-week period. Synthetic data for mrees My, Ms, and M3 are derived from
their own individual models, while those for machinks, Ms, and Mg are based o/, Ms, and Ms5,
respectively. Table 4 shows the local run characteristfcallsix machines for both the heavy and light
workloads.

Heavy Workload
M, | M | M3 | My | Ms | Mg
Number of Jobs 10,192 3,342| 2,900| 336 830| 1,658
Local Machine Utilization 94% | 83% 88% | 33% 72% 81%

Average Wait Time (sec) 254,797| 5,871 | 14,293| 2,779| 6,872| 18,697
Average Response Time (secp60,010| 9,295 | 19,554 | 7,756 | 10,154 | 24,460

Light Workload
M1 | M2 | M3 | M4 | M5 | MG
Number of Jobs 10,432| 3,483 2,774| 350 864 | 1,704
Local Machine Utilization 82% | 72% 42% | 36% 75% 62%
Average Wait Time (sec) 3,064 661| 1,241 3,099| 7,463| 5,509

Average Response Time (sec) 8,266 | 4,199| 6,321| 7,466 | 11,146 | 10,865

Table 4: Characteristics of synthetic workloads for locels.
Figure 4 presents simulation results for the heavy and $ighthetic workloads for the five performance

metrics described in Section 3.2. Observe that, as withéhbworkloads, superschedulers significantly
outperform the local scheme from the users’ perspectivee(ms of normalized average response and wait

11

1 1
0.8 1 mLocal 0.8 1 o Local
|mS- |mS-
0.6 — aRrl 0.6] aORrl
0.4 | osy-l 0.4 | osy-l
mCntl mCntl
0.2 4 @ ldeal 0.2 4 o ldeal
0 0 _i:':h;
Heavy load Light load Heavy load Light load
Normalized Average Response Time Normalized Average Wait Time
70 100%
60 1 @ Local 90% D Local
50 1 ms ms
40 4 oR 80% 1 aRrl
30 4 0O Sy-I 70% A oSy-I
20 1] mCntl mCntl
10 1 @ Ideal 60% I ﬂ mldeal
0 T 50% -
Heavy load Light load Heavy load Light load
Average Wait Time Deviation Grid Hficiency
0.80
0.60 - @ Local
mSs
0.40 - ORI
O Sy-I
0.20 - mCntl
0.00
Heavy load Light load
Fraction of Jobs Transferred

Figure 4: Performance results for the heavy and light syiatieorkloads.

times, and average wait time deviation). Furthermore, asittmber of machines grows from three to six,
the advantages of a grid scheduler become more pronouneedavthe lightly-loaded case. For example,
compared to local scheduling, the S-I approach improvesieeage wait time by factors of 5.9 and 21,
and the average response time by factors of 5.0 and 1.5 fdwetlney and light workloads, respectively. For
the heavily-loaded simulation, there is a more dramaticrawg@ment in the average response time when
compared with the real workload results in Figure 3. The kffgrénce is the introduction of machiné,
whose 1300 MHz clock allows the simulated computations toplete approximately 3.5 times faster than
the other machines in our study. This highlights the draen@dtential gain that could be attained within a
large-scale heterogeneous grid configuration.

Grid efficiency in Figure 4 shows that for the lightly-loadeskt case, there is almost no change in
performance relative to the local algorithm. This is comsiswith the results for the real (under-subscribed)

12

workload data. However, the heavily-loaded configuratiemdnstrates that for over-subscribed systems,
grid efficiency can be improved through the use of an intefiigsuperscheduler. For example, the S-I
strategy achieves 85% grid efficiency, compared with 65%tHerlocal approach. In fact, the idealized
case achieves 100% efficiency in this example. As discussadopsly in Section 4.1, each of the grid
scheduling algorithms offers a tradeoff between perforweaand the number of transferred jobs. Overall
our simulation results demonstrate the tremendous patesftusing a superscheduler, for both individual
users and system administrators.

4.3 Effectsof Local Scheduler

The simulation results presented in Sections 4.1 and 4iresshat the local scheduling policy of each
individual machine is the popular first-come-first-servehvbackfilling (FCFS+BF). However, the local
scheduling algorithm will definitely affect overall grid h&vior. Since the superscheduler has no control
over local scheduling policies, we evaluate grid perforogamsing two alternative local scheduling policies:
first-fit (FF) and shortest-job-first (SJF). Figure 5 examitie effects of the different local schedulers using
the sender-initiated distributed job migration algoritfonthe one-month real workload data set.

0.8
0.7 4
0.6 §

0.5 O FCFS+BF
0.4 mFF
0.3 OSJF

0.2 4
0.1

Normaliz Avg Normaliz Avg Fraction Jobs
Wait Time Response Time Transferred

Effect of Local Scheduling Policy

Figure 5: Effects of local scheduler policy on grid perfomoa for the S-I job migration algorithm.

Results indicate that the choice of local scheduler has rafsignt effect on grid performance. For
example, FCFS+BF minimizes the average wait and respoms tior our test workload; however, SJF
transfers the fewest number of jobs. Grid efficiency (notwstjois not affected by the local scheduling
policy since the workload is under-subscribed, as discliss&ection 4.1. Nevertheless, even the slowest
local scheduler (SJF) with superscheduling still outpenfothe local run by more than a factor of two in
terms of average response time.

5 Conclusions and Future Work

Computational grids hold great promise in utilizing gegdniaally separated heterogeneous resources to
solve large-scale complex scientific problems. Howevemnmber of major technical hurdles, including
distributed resource management and effective job scimedudtand in the way of realizing the true po-
tential of grid computing. In this work, we proposed a nouwgberscheduler architecture and investigated
its performance across a number of key metrics in a simulaivironment. Three distributed job migra-
tion algorithms were introduced: sender-initiated (Sd}eiver-initiated (R-1), and symmetrically-initiated
(SY-I). The S-1 approach actively attempts to migrate jolbege resource requirements cannot be quickly
satisfied on the local system. R-I scheduling, on the othed hases a more passive strategy where queued
jobs must wait for remote systems to advertise their awditlabThe SY-I algorithm is a hybrid scheme,

13

combining elements of both passive and active job migratide also investigated a centralized architec-
ture to compare distributed performance with a global agghp however, this methodology has practical
limitations in terms of fault tolerance and scalabilityn&ily, an idealized (and unattainable) algorithm was
presented to establish an upper bound on superschedulernpance.

A critical aspect of this research was the set of real anchsyist workloads used in our experiments.
Real workloads were collected from three leading supercdimg centers over the same six-month period,
allowing us to accurately simulate the potential contidoubf an intelligently implemented superscheduler.
Additionally, sophisticated statistical methods weredusegenerate synthetic data for parameter studies of
varying workload conditions.

Several key metrics were used in our experiments to evathateffectiveness of the proposed super-
scheduler and job migration algorithms. Results dematestrthe tremendous potential of an effectively
implemented grid environment, even for a small number dfigipating architectures. For example, com-
paring the local scheme with S-1 for six-month data, the agerwait time was reduced by a factor of 2.5,
along with a 30% improvement in deviation and a 1.5X reductiothe average response time. Compar-
ing individual job migration schemes, we found that the S¥sproach struck the best balance between
optimizing performance and reducing job transfers.

The synthetically generated workload data allowed us téopar experiments for both heavily- and
lightly-loaded system conditions. Results demonstratetifor a larger heterogeneous six-machine config-
uration, the advantages of the superscheduler becomespmmeunced, even for the lightly-loaded case.
For example, compared to local scheduling, the S-I appraapioved the average wait time by factors
of 5.9 and 21, and the average response time by factors oh8.Q.& for the heavy and light workloads,
respectively. Furthermore, grid efficiency increased f@8%6 to 85% under heavy workload conditions.

Finally, we investigated the relationship between the mgbeeduler and three different local scheduling
policies. Results showed that first-come-first-serve wabkiilling gave the best performance in terms of
average wait and response times; however, all three lobablsding approaches together with a supersched-
uler improved overall performance compared with locallylased systems. Our results demonstrated that
superscheduling can deliver substantial performancesghowever, it is important to realize that many im-
portant questions have not been addressed in this prelyrstizdy. Future work will build on our simulation
environment to include critical parameters, such as jolratiign overhead, grid network costs, supersched-
uler scalability, fault tolerance, multi-resource reguirents, and architectural heterogeneity. Additionally,
we plan to investigate the practical implementation rezuients necessary to deploy a distributed super-
scheduler into a real-world grid environment.

Acknowledgements

The authors would like to gratefully thank LBNL, LLNL, and SI@ for providing the batch job trace
files. The first two authors were supported by Director, Ofit€omputational and Technology Research,
Division of Mathematical, Information, and Computatiordiences of the U.S. Department of Energy
under contract number DE-AC03-76SF00098.

References

[1] Global Grid Forum. http://www.gridforum.org.

[2] Top500 Supercomputer Sites. http://www.top500.0rg.

14

[3] M. Arora, S.K. Das, and R. Biswas. A de-centralized schieg and load balancing algorithm for
heterogeneous grid environments.Viorkshop on Scheduling and Resource Management for Cluster
Computing pages 499-505, 2002.

[4] C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Stasitl R. Yahyapour. On advantages of grid
computing for parallel job scheduling. Bnd International Symposium on Cluster Computing and the
Grid, pages 39-46, 2002.

[5] D.G. Feitelson. Packing schemes for gang schedulin@nthWorkshop on Job Scheduling Strategies
for Parallel Processingvolume LNCS 1162, pages 89—-100, 1996.

[6] D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.C. Skyvand P. Wong. Theory and practice in
parallel job scheduling. 18rd Workshop on Job Scheduling Strategies for Parallel Bssing volume
LNCS 1291, pages 1-34, 1997.

[7] D.G. Feitelson and A.M. Weil. Utilization and predicilty in scheduling the IBM SP2 with backfill-
ing. In12th International Parallel Processing Symposiyrages 542-546, 1998.

[8] lan Foster and Carl Kesselman, editorShe Grid: Blueprint for a New Computing Infrastructure
Morgan Kaufmann, San Francisco, CA, 1999.

[9] H. Franke, J. Jann, J.E. Moreira, P. Pattnaik, and M.&eJeA evaluation of parallel job scheduling
for ASCI Blue-Pacific. InProc. SC99CD-ROM, 1999.

[10] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yqloya. Evaluation of job-scheduling strategies
for grid computing. Inlst International Workshop on Grid Computingglume LNCS 1971, pages
191-202, 2000.

[11] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, Jafrlordan. Modeling of workload in MPPs.
In 3rd Workshop on Job Scheduling Strategies for Parallel Bssing volume LNCS 1291, pages
95-116, 1997.

[12] M.A. Johnson and M.R. Taaffe. Matching moments to pldistibutions: Mixtures of Erlang distri-
butions of common ordeStochastic Mode)$(4):711-743, 1989.

[13] J. Krallmann, U. Schwiegelshohn, and R. Yahyapour. i@@ndesign and evaluation of job scheduling
algorithms. In5th Workshop on Job Scheduling Strategies for Parallel Pssing volume LNCS
1659, pages 17-42, 1999.

[14] W. Leinberger, G. Karypis, V. Kumar, and R. Biswas. Ldedancing across near-homogeneous multi-
resource servers. Bth Heterogeneous Computing Workshpages 60—71, 2000.

[15] R.D. Nelson, D.F. Towsley, and A.N. Tantawi. Perforroaranalysis of parallel processing systems.
IEEE Transactions on Software Engineeriig(4):532-540, 1988.

[16] J.M. Schopf. Ten actions when superscheduling. Witpav.gridforum.org/documents/GFD, 2001.

15

